
Symbolic maximum likelihood estimation with

Mathematica

Colin Rose

Theoretical Research Institute, Sydney, Australia

and Murray D. Smith

University of Sydney, Australia

[Received May 1998. Revised October 1999]

Summary. Mathematica is a symbolic programming language that empowers the user to undertake
complicated algebraic tasks. One such task is the derivation of maximum likelihood estimators,
demonstrably an important topic in statistics at both the research and the expository level. In this
paper, a Mathematica package is provided that contains a function entitled SuperLog. This function
utilizes pattern-matching code that enhances Mathematica's ability to simplify expressions involving
the natural logarithm of a product of algebraic terms. This enhancement to Mathematica's func-
tionality can be of particular bene®t for maximum likelihood estimation.

Keywords: Computer algebra systems; Estimate; Estimator; Mathematica; Symbolic maximum
likelihood; Teaching

1. Introduction

Although statistical software has long been used for maximum likelihood (ML) estimation, the

focus of attention has almost always been on obtaining ML estimates (a numerical problem), ra-

ther than on deriving ML estimators (a symbolic problem). Even after the introduction of powerful

computer algebra systems, in the context of ML estimation, symbolic engines have largely only

been used to solve numerical problems (see, for example, Currie (1995) and Cook and Broemeling

(1995)) or to derive large sample symbolic approximations to ML estimators (see Stafford and

Andrews (1993) and Stafford et al. (1994)). By contrast, we use a computer algebra system for the

®rst time to derive exact symbolic ML estimators from ®rst principles.

This paper shows how Mathematica (see Wolfram (1996)) can be extended to handle symbolic

ML estimation, which is demonstrably an important topic in statistics, at both the research and the

expository level. The paper has ®ve sections. Section 2 expands Mathematica's programming

language to handle symbolic ML estimation. Section 3 illustrates the approach with three simple

expository examples and is therefore well suited for teaching purposes. Section 4 extends the

analysis to more challenging material. Section 5 concludes. Appendices follow giving a glossary

of Mathematica terms and the package code.

& 2000 Royal Statistical Society 0039±0526/00/49229

The Statistician (2000)
49, Part 2, pp. 229±240

Address for correspondence: Murray D. Smith, Econometrics and Business Statistics, University of Sydney, Sydney,
NSW 2006, Australia.
E-mail: Murray.Smith@econ.usyd.edu.au

2. Extending Mathematica: the package SMLE

Consider the following simple problem. Let (Y1, . . ., Yn) denote a random sample of size n

collected on Y � Poisson(è), where parameter è. 0 is unknownÐshow that the mean of the

random sample is the ML estimator of è.

We begin our answer in the usual way by inputting the likelihood function into Mathematica:

In[1]:� L � Qn
i�1

eÿèèYi

Yi!

If we try to evaluate the log-likelihood

In[2]:� Log[L]

Out[2] � Log
Qn
i�1

eÿèèYi

Yi!

" #
nothing happens, and for good reason! Mathematica will not normally `convert' an expression

such as Log[a3b] into Log[a]�Log[b] because symbols a and b could represent anything.

Prima facie, it may appear then that a student armed with a pencil and paper can achieve much

more than Mathematica. Of course, when deriving the log-likelihood, the student makes use of

information which Mathematica does not `know'; for example, the student knows that Yi takes

non-negative integer values, that n is a positive integer, that è is positive and real valued, that each

term in the product is positive and real valued etc. Mathematica assumes nothing about the

symbols that have been entered, so its inaction is perfectly reasonable.

Fortunately, ML problems have some common features which we can exploit: the contributions

to the likelihood are all positive valued, the sample size is a positive integer and parameters and

variables are real valued. These features can be added to Mathematica, not by providing explicit

information about each symbol in turn, but rather by providing a pattern-matching function that

assumes these common features. To do so, we load our small package entitled SMLE.m (see

Appendix B) into Mathematica in the usual way:

In[3]:� �SMLE:m
(The code given in the SMLE.m package should be stored as a text ®le on disc under the name

SMLE.m. It should be placed in any one of the directories which Mathematica searches when

attempting to ®nd an external ®leÐthis list of directories can be determined by using the $Path
command.) This package is also available electronically by anonymous ®le transfer protocol at

ftp:==ftp:tri:org:au=SMLE:m

We then `activate' our SuperLog function as follows:

In[4]:� SuperLog[On]

SuperLog is now On:

If we now evaluate Log[L] again, we obtain a much more useful result:

In[5]:� logL � Log[L]

Out[5] � ÿn èÿPn
i�1

Log[Yi!]� Log[è]
Pn
i�1

Yi

In essence, SuperLog modi®es Mathematica's Log function to mimic what our student does:

230 C. Rose and M. D. Smith

it converts `logarithms of products' into `sums of logarithms'. It simpli®es log-likelihood ex-

pressions of the form log(Ðn

i�1 f i) where we know that f i is de®ned on the positive real line. To do

this, SuperLog exploits the power of the Mathematica programming language by using pattern-

matching code (apart from reserved symbols, the function accepts any indexing symbol, any

symbol for sample size and any functional form for the likelihood contributions). The SMLE.m

package has been tested using both version 3 and version 4 of Mathematica on platforms including

Macintosh, Windows 95, Windows 98, Windows NT, SGI Unix and DEC Unix. To return

Mathematica's Log function to its default status, simply enter SuperLog[Off].

3. Simple examples

In this section, we consider three expository examples.

3.1. Example 1: Poisson distribution
We have already derived the log-likelihood for the Poisson distribution. The score is

In[6]:� score � @è logL

Out[6] � ÿn�
Pn

i�1Yi
è

where Mathematica's internal partial differential operator @è has been used. Setting the score to 0

de®nes the ML estimator è̂. The resulting equation can be easily solved by using Mathematica's

Solve function. The ML estimator è̂ is given as a replacement rule! for è:

In[7]:� ^è � Solve[score �� 0, è]

Out[7] � è!
Pn

i�1Yi
n

� �� �
where the second-order conditions con®rm that è̂, the mean of the random sample, is indeed the

ML estimator.

In[8]:� @fè,2glogL

Out[8] � ÿ
Pn

i�1Yi
è2

Finally, let us suppose that an observed random sample is (1, 0, 3, 4):

In[9]:� data � f1, 0, 3, 4g;
Then the ML estimate of è is obtained by substitution of these data into the ML estimator è̂:

In[10]:� ^è =: fn! 4, Yi :.data[[i]]g
Out[10] � ffè! 2gg

(There are several ways to enter data into Mathematica objects. The method used here is based on

one of Mathematica's replacement rules :.. The notation data[[i]] is Mathematica notation for

the ith element of the list data.)

Maximum Likelihood Estimation with Mathematica 231

3.2. Example 2: exponential distribution
Suppose that the positive-valued continuous variable Y is such that Y � Exp(è), where parameter

è. 0. For a random sample of size n on Y , we have the log-likelihood function as

In[11]:� logL � Log
Qn
i�1

eÿYi=è

è

" #
== Apart

Out[11] � ÿnLog[è]ÿ
Pn

i�1Yi
è

which has been further simpli®ed by using the Apart function. The score is

In[12]:� score � @è logL

Out[12] � ÿn
è
�
Pn

i�1Yi
è2

The ®rst-order conditions are given by

In[13]:� ^è � Solve[score �� 0, è]

Out[13] � è!
Pn

i�1Yi
n

� �� �
and the second-order conditions evaluated at è̂ are

In[14]:� @fè,2glogL =: Flatten[
^è]

Out[14] � ÿ n3

(
Pn

i�1Yi)2

Hence, the Hessian is strictly negative. The ML estimator is thus è̂ � (1=n)Ón

i�1 Yi.

3.3. Example 3: beta distribution
Let the proportion Y be a random variable de®ned over the unit interval of the real line, 0 , y , 1.

Furthermore, let the probability density function (PDF) of Y be given by

In[15]:� f � è yèÿ1

Thus Y � beta(è, 1), where parameter è. 0 is unknown. Clearly the distribution of Y is a special

case of the standard two-parameter beta distribution. For a random sample of size n on Y , the log-

likelihood for è is given by

In[16]:� logL � Log
Qn
i�1

(f =: y! Yi)

� �

Out[16] � nLog[è]� (ÿ1� è)
Pn
i�1

Log[Yi]

The ML estimator of è is derived as

232 C. Rose and M. D. Smith

In[17]:� ^è � Solve[@è logL �� 0, è]

Out[17] � è! ÿ nPn

i�1 Log[Yi]

� �� �
because on inspecting the Hessian

In[18]:� @fè,2glogL

Out[18] � ÿ n

è2

we see that it is negative for all è; thus the log-likelihood is globally concave in è and the solution

to the ®rst-order condition corresponds to the unique maximum.

4. Further illustrations

In this section, we consider three examples in which Mathematica is used to derive the ML

estimator. All three are commonly used when teaching ML estimation. In addition, we show how

to use Mathematica to tackle other important issues concerning ML estimation such as deriving

the distribution of an ML estimator, proving concavity of a log-likelihood and concentration of a

log-likelihood.

4.1. Example 3 (continued): beta distribution
Continuing the beta(è, 1) model, consider the problem of determining the exact distribution of the

ML estimator è̂ � ÿn=Ón

i�1 log(Yi). This can be attempted with Mathematica by using the

moment-generating function (MGF) method (Mittelhammer (1996), section 3.5, provides a good

description of this method). First, we derive the MGF of log(Y), i.e. we ®nd E[expft log(Y)g] �
E(Y t):

In[19]:� SetOptions[Integrate, GenerateConditions! False];

In[20]:� mgf �
�1
0

yt f dy

Out[20] � è

t� è

where, for simplicity, we have turned off the Integrate option which yields conditional output.

Next, because (Y1, . . ., Yn) is a random sample of size n, the MGF of

log(Y) � ÿ 1

n

Pn

i�1

log(Yi) � 1

è̂

is, by the MGF theorem, equal to

E exp ÿ t

n
log(Y)

� �� �n

� E(Y ÿ t=n)n:

Given our previous output, we only need to use a replacement rule to determine the MGF of

log(Y):

Maximum Likelihood Estimation with Mathematica 233

In[21]:� mgf =: t! ÿt
n

� �n

== Simplify

Out[21] � n è

ÿt� n è

� �n

This expression can be recognized as the MGF of a random variable W � gamma(n, 1=nè), as we

verify by comparing it with

In[22]:� g � waÿ1eÿw=b

Gamma[a] ba
=: a! n, b! 1

n è

� �
;

In[23]:�
�1
0

etwg dw == PowerExpand

Out[23] � nn èn (ÿt� n è)ÿn

Given that log(Y) is gamma distributed, and that è̂ � 1=log(Y), it follows that the ML estimator

è̂ has an inverted gamma distribution with parameters n and 1=nè. The PDF of è̂ � q . 0 is easily

derived by transformation:

In[24]:� w � 1

q
; pdf � Abs[@q w] g

Out[24] �
eÿnè=q

1

q

� �ÿ1�n
1

n è

� �ÿn
Abs[q]2 Gamma[n]

If desired, this expression can be further simpli®ed by using a replacement rule, since the argu-

ment of the absolute value is always positive. The mean of the ML estimator is easily derived:

In[25]:�
�1
0

q pdfdq == FullSimplify

Out[25] � n è

ÿ1� n

It is easy to see from this output that the ML estimator è̂ is biased upwards.

4.2. Example 4: normal linear regression model
A statistical model of considerable practical importance is the normal linear regression model.

For illustration, we shall consider a simple case of this model, namely a regression model with a

constant dummy and one regressor variable X . For a given value of X � x, the conditional distri-

bution of the dependent variable Y is assumed to be

Y j(X � x) � N (â1 � â2x, ã),

where parameter è � (â1, â2, ã) (we use ã to denote the variance parameter). Denote a random

sample of T pairs on (Y , X) by ((Y1, X 1), . . ., (YT , X T)). We assume, conditional on each X k

� xk , that Yi is independent of Yj for all i 6� j (i, j, k � 1, . . ., T). Under these assumptions, the

log-likelihood is given by

234 C. Rose and M. D. Smith

In[26]:� logL � Log
QT
k�1

eÿ(Ykÿì)2=(2ã)�����������
2ð ã
p =: ì! â1 � xk â2

" #

Out[26] � ÿ 1

2ã

�
T ãLog[2]� T ãLog[ð]� T ãLog[ã]

� T â21 � â22
PT
k�1

x2k � 2â1 â2
PT
k�1

xk ÿ
PT
k�1

Yk

� �
ÿ 2â2

PT
k�1

xk Yk �
PT
k�1

Y2
k

�
The score vector is given by

In[27]:� score � f@â1 logL, @â2 logL, @ãlogLg == Simplify

Out[27]� ÿT â1 ÿ â2
PT
k�1

xk �
PT
k�1

Yk

ã
,

ÿâ1
PT
k�1

xk ÿ â2
PT
k�1

x2
k �

PT
k�1

xk Yk

ã
,

8><>:
1

2ã2
ÿT ã� T â21 � â22

PT
k�1

x2
k � 2â1 â2

PT
k�1

xk ÿ
PT
k�1

Yk

� ��

ÿ 2â2
PT
k�1

xk Yk �
PT
k�1

Y2k

�9>=>;
The ML estimators of è are derived by Mathematica as

In[28]:� ^
è � Solve[score �� f0, 0, 0g, fâ1, â2, ãg]

Out[28] � ã! ÿPT
k�1

x2
k

PT
k�1

Yk

� �2

� 2
PT
k�1

xk

� � PT
k�1

Yk

� �PT
k�1

xk Yk ÿ T
PT
k�1

xk Yk

� �2�8>>><>>>:
8>>><>>>:
ÿ PT

k�1
xk

� �2PT
k�1

Y2
k � T

PT
k�1

x2
k

� �PT
k�1

Y2
k

��
T ÿ PT

k�1
xk

� �2

� T
PT
k�1

x2
k

� �� �
,

â1 !
PT
k�1

x2k

� �PT
k�1

Yk ÿ
PT
k�1

xk

� �PT
k�1

xk Yk

ÿ PT
k�1

xk

� �2

� T
PT
k�1

x2
k

, â2 !
PT
k�1

xk

� �PT
k�1

Yk ÿ T
PT
k�1

xk Yk

PT
k�1

xk

� �2

ÿ T
PT
k�1

x2k

9>>>=>>>;
9>>>=>>>;

The functional form given for the estimator is unfamiliar and imposing. However, if we iteratively

solve the ®rst-order conditions

Maximum Likelihood Estimation with Mathematica 235

In[29]:� ~
â1 � Solve[score[[1]] �� 0, â1] == Simplify

Out[29]�
â1 !

ÿâ2
PT
k�1

xk �
PT
k�1

Yk

T

8<:
9=;

8<:
9=;

In[30]:� ~
â2 � Solve[(score[[2]] =:

~
â1) �� 0, â2] == Simplify

Out[30] � â2 !
PT
k�1

xk

� �PT
k�1

Yk ÿ T
PT
k�1

xk Yk

PT
k�1

xk

� �2

ÿ T
PT
k�1

x2
k

8>>><>>>:
9>>>=>>>;

8>>><>>>:
9>>>=>>>;

it is fairly easy to see that these results are just the well-known formulae for the estimators that are

presented in most elementary texts:

â̂1 � Y ÿ â̂2x

and

â̂2 �
PT
k�1

(Yk ÿ Y)(xk ÿ x)

�PT
k�1

(xk ÿ x)2:

Further analysis might include the veri®cation of the equivalence between functional forms and a

formal check of the second-order conditions. Both exercises involve a mixture of work with

Mathematica and with a pencil and paper.

For data collected on the variables, it is straightforward to compute ML estimates. For example,

if the data are

In[31]:� depY � f1, 0, 3, 4g; regX � f1, 2, 3, 4g;
the ML estimates are

In[32]:� ^
è =: fT! 4, Yk :.depY[[k]], xk :.regX[[k]]g

Out[32] � ã! 7

10
, â1 ! ÿ1, â2 ! 6

5

� �� �

4.3. Example 5: gamma distribution
Let (Y1, . . ., YT) denote a random sample of size T collected on a random variable Y � y . 0

which is gamma distributed; i.e. Y � gamma(á, â), where parameter è � (á, â), with á. 0 and

â. 0. We wish to determine the ML estimator of è. The log-likelihood is

In[33]:� logL � Log
QT
i�1

Yáÿ1
i eÿYi=â

Gamma[á] âá

" #
== Apart

Out[33] � ÿTáLog[â]ÿ TLog[Gamma[á]]ÿPT
i�1

Log[Yi]� á
PT
i�1

Log[Yi]ÿ
PT

i�1Yi
â

For this problem, the ML estimator of è admits, only in part, a closed form solution. To see this,

consider the score:

236 C. Rose and M. D. Smith

In[34]:� score � f@á logL, @â logLg

Out[34] � ÿTLog[â]ÿ TPolyGamma[0, á]�PT
i�1

Log[Yi], ÿT á

â
�
PT

i�1Yi
â2

()
where the PolyGamma[0,á] term is Mathematica's notation for the digamma function (the ®rst

derivative of the natural logarithm of the gamma function). For Mathematica to derive the ML

estimator in closed form, it must successfully execute Solve[score��{0,0},{á,â}].

Unfortunately, this task cannot be performed in this case because of the presence of the

PolyGamma function. Nevertheless, we can make progress by concentrating the log-likelihood in

â. This is because

In[35]:� ^
â � Solve[score[[2]] �� 0, â]

Out[35] � â!
PT

i�1Yi
T á

� �� �
is in a closed form. Mathematica has given us â̂ as a function of á, i.e. â̂ � â̂(á). Hence, the ML

estimator of â is

â̂(á̂) � 1

á̂T

PT
i�1

Yi,

where á̂ denotes the ML estimator of á. Replacing â with â̂(á) in the log-likelihood yields the

concentrated log-likelihood:

In[36]:� ConlogL � logL =: Flatten[
^
â]

Out[36] � ÿT áÿ TLog[Gamma[á]]ÿ T áLog

PT

i�1Yi
T á

� �
ÿPT

i�1
Log[Yi]

� á
PT
i�1

Log[Yi]

As in the original problem, maximization of the concentrated log-likelihood with respect to á
does not yield a closed form solution. Hence, the ML estimator is de®ned implicitly by

á̂ � arg maxá. 0(ConlogL):

For a speci®c set of data, numerical techniques are required to determine the ML estimate á̂.

With actual data, the issue of determining a suitable numerical algorithm to maximize the

observed concentrated log-likelihood becomes important. Mathematica's in-built optimizer

FindMinimum has a suite of the more popular gradient method algorithms available to the user,

including the Newton±Raphson algorithm. Of course, which of these algorithms, if any, is

appropriate depends very much on the particular situation at hand. In the present case, further

algebra with Mathematica enables us to uncover concavity in á:

In[37]:� @fá,2gConlogL == Factor

Out[37] � ÿT(ÿ1� áPolyGamma[1, á])

á

Maximum Likelihood Estimation with Mathematica 237

The sign of the derivative obviously depends on the quantity within round brackets. A plot against

various á. 0 is a simple, informal device for determining its sign; for example,

In[38]:� Plot[ÿ1� áPolyGamma[1, á], fá, 0:1, 5g]

As the plot is everywhere positive, the Hessian must be negative for all á. 0. Thus the

concentrated log-likelihood is concave in á, and we may conclude that the Newton±Raphson

algorithm is well suited for estimating á.

5. Conclusion

Although computer software has long been used for ML estimation, the focus has almost always

been on numerical rather than on symbolic problems. In this paper, we have shown how the

Mathematica computer algebra system can be used to derive symbolic ML estimators. This was

done by modifying Mathematica's Log command using our SuperLog function. This is

especially useful when constructing the log-likelihood for a random sample consisting of

independent random variables. We have shown how this new function enhances Mathematica's

functionality and have demonstrated its particular bene®ts for the teaching of ML estimation.

Acknowledgements

Revisions to this paper were undertaken while Smith was visiting the Sonderforschungsbereich

386, InstituÈt fuÈr Statistik, Ludwig-Maximilians-UniversitaÈt, MuÈnchen, Germany. The content of

the paper bene®tted from presentations at the Worldwide Mathematica Conference (Chicago,

1998), the International Association for Mathematics and Computers in Simulation Conference on

Applications of Computer Algebra (Prague, 1998) and the Royal Statistical Society international

conference (Glasgow, 1998) and from discussions with seminar participants at the University of

Sydney. We also thank the Joint Editor and referee for helpful comments. Smith acknowledges

gratefully the support of the Alexander von Humboldt-Stiftung.

Appendix A: Glossary

For completeness, we provide a short summary of the use and syntax of some of the Mathematica
functions that appear in the paper. Further details of these, and all other functions, can be found in
Wolfram (1996); see also the on-line help provided with the Mathematica software.

238 C. Rose and M. D. Smith

A.1. Simpli®cation rules
Functions Apart, Factor, FullSimplify, PowerExpand, and Simplify represent a portion of
a suite of commands designed to perform various algebraic manipulations to a speci®ed expression. The
syntax of each of these commands is, for example, Simplify[expr] or expr // Simplify. The
latter is the form which we generally prefer.

A.2. Brackets
Brackets in Mathematica have distinct interpretations and are not interchangeable. Square brackets []
are reserved for use with Mathematica function names; for example the logarithm function is Log[]. A
list of elements is collected between braces { }; vectors and matrices are built from lists. Round brackets
() are the only parentheses which have the usual term-collective interpretation.

A.3. Partial differentiation
@è is Mathematica's partial differential operator. Its syntax, for the partial derivative of an expression
expr with respect to a symbol è, is @è expr. The syntax for the second-order partial derivative is
@fè,2gexpr.

A.4. Replacement rules
The ability to replace, in a given expression, a symbol with other symbols or numeric quantities is a vital
component of the Mathematica programming language. For instance, expr=: è! ô, acts on expr by
replacing symbol è with ô, wherever the former occurs in expr. By contrast, expr=: è: . ô, acts on
expr by replacing symbol è with ô, but delaying the evaluation of ô until after the replacement has been
performed. This form of transformation is especially useful when expr is a symbolic sum, and we wish
to evaluate it for a speci®c set of data.

A.5. Search functions
Solve searches for solutions to an equation or set of equations. The command Solve[expr �� 0, è]
attempts to ®nd the values of è for which expr �� 0. If sol denotes the solution to an equation, the
output from Solve is reported in the form of a list of replacement rules, e.g. fè! solg. In the case of
polynomial equations, Mathematica attempts to output all solutions, including complex-valued solutions.
Sets of equations must be enclosed within a list, e.g. fexpr1 �� 0, expr2 �� 0g. Similarly, if the
solutions are sought in two or more variables, then those variable symbols must be placed in a list also,
e.g. fè1, è2g: hence, Solve[fexpr1 �� 0, expr2 �� 0g, fè1, è2g].

Appendix B: Code

(�:Name: SMLE �)
(�:Authors: Colin Rose and Murray D. Smith �)
(�:Version: Mathematica v3, or v4, or later required �)
(�:Legal: Copyright 1999 �)
(�:Summary: Symbolic Maximum Likelihood Estimation �)

BeginPackage["SMLE`"]

SuperLog::usage �
"SuperLog[On] activates the enhanced Log operator, so that
Log[Product[_ _]] objects get converted into sums of logs.
SuperLog[Off] switches the enhancement off."

Begin["`Private`"]

SuperLog[Q_]:� Module[ferk, iii, nnng,

Maximum Likelihood Estimation with Mathematica 239

Product[iii,{iii,nnn}]; (� pre-load Product �)
Which[
Q ��� On,
Unprotect[Log]; Clear[Log];
Log[Product[x_,{k_, a_, b_}]]:�

Log[Product[Times[erk, x],{k, a, b}]] =: erkÿ.1;
Log[Product[HoldPattern[Times[x_ _]],{k_, a_, b_}]] :� Simplify[
Map[Sum[#,{k, a, b}]&, Plus@@Map[Expand[PowerExpand[Log[#]]]&,
List[x]]] //.
Sum[u_: w_, {kk_, aa_, bb_}] :. u Sum[w,{kk, aa, bb}] /; FreeQ[u, kk]��
True];
Protect[Log]; Print["SuperLog is now On."],

Q ��� Off,
Unprotect[Log]; Clear[Log]; Protect[Log]; Print["SuperLog is now Off."],

True,
Print["Carumbah! Please use SuperLog[On] or SuperLog[Off]."]
]]

End[]
Protect[SuperLog];
EndPackage[]

References

Cook, P. and Broemeling, L. (1995) Bayesian statistics using Mathematica. Am. Statistn, 49, 70±76.
Currie, I. D. (1995) Maximum likelihood estimation with Mathematica. Appl. Statist., 44, 379±394.
Mittelhammer, R. (1996) Mathematical Statistics for Economics and Business. New York: Springer.
Stafford, J. and Andrews, D. (1993) A symbolic algorithm for studying adjustments to the pro®le likelihood. Biometrika,

80, 715±730.
Stafford, J., Andrews, D. and Wang, Y. (1994) Symbolic computation: a uni®ed approach to studying likelihood. Statist.

Comput., 4, 235±245.
Wolfram, S. (1996) The Mathematica Book, 3rd edn. Cambridge: Cambridge University Press.

240 C. Rose and M. D. Smith

