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Abstract 

This paper models expected future values of Gaussian stochastic processes that are 
bounded by reflecting barriers. Such expectations are of course crucial to any model with 
forward looking agents. The approach is illustrated by applying it to an exchange rate 
target zone. By adopting a distributional approach, the formal analysis can be both 
simple and somewhat elegant. In doing so, we show that the first moments of folded and 
censored distributions are related in a surprisingly neat way. The setting is discrete-time. 
though where appropriate we extend the analysis to the continuous-time analogue of 
reflected Brownian motion. 

Key words: Censored/folded distributions; Random walks; Reflecting barriers; Exchange 
rate target zone 
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1. Introduction 

Many recent innovations in economic theory share, as a common underlying 
element, a stochastic process that is bounded by a reflecting barrier. Examples 
include such major growth areas as the literature on exchange rate target zones 
and the theory of irreversible investment under uncertainty - Dixit (1993) and 
Rose (1993) consider a variety of such problems. In the statistical literature, the 
term ‘reflecting barrier’ has two main interpretations. The first interpretation 
can be captured by a censored distribution, while the second can be captured by 
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a folded distribution. Given this backdrop, Section 2.1 generates a new statis- 
tical identity by illustrating that the first moments of censored and folded 
distributions are related in a surprisingly neat way, and hence that the two types 
of reflecting barrier are also related. Section 2.2 generates explicit solutions 
when the unbounded stochastic process follows a Gaussian random walk. 
Section 3 applies the above methodology to the problem of modelling an 
exchange rate in a perfectly credible target zone. By adopting a statistical 
approach, we illustrate that this problem is in fact rather simple. At the same 
time, the analysis is general for it can apply to both discrete-time and continu- 
ous-time settings. The paper adopts a discrete-time setting, but considers the 
continuous-time analogue where appropriate. 

2. Formal analysis 

2.1. Rejecting barriers and censored/folded distributions 

Let (et > denote a shock-generating process of independent, identically distrib- 
uted random variables. In the absence of any barriers, this yields a random 
process defined recursively by 

x;“+1 =x: + &,+1. 

More generally, given some drift term k, we have’ 

x,*+l=x:+k+e,+l. 

In the presence of lower and/or upper reflecting barriers denoted _x, X, 
respectively, a reflected process {xt} will be obtained in contrast to the unrestric- 
ted process {XT) described above. At any time t, outcome x, is assumed known, 
whereas x, + 1 is of course unknown. In any model with forward-looking agents, 
the expectation of x,+ 1 conditional on x, will then, typically, be crucial. For 
notational convenience, let X = x, + k + E,+ 1. Thus, X denotes next periods 
outcome, in the absence of a barrier. Given xt, let X have pdf 4 (X) with mean p, 
and distribution function Q(X). 

In the statistical literature, the term reflecting barrier takes on two distinct 
interpretations. To distinguish between them, we refer to them as the Reflecting 
Sticky Barrier and the Reflecting Mirror Barrier. 

‘Concomitant to the discrete-time framework, the drift term k and the shock term E are assumed to 
be contemporaneous. 
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The rejecting sticky barrier 

Cox and Miller (1965) define a reflecting barrier as ‘a state which, when 
crossed in a given direction, say downwards, holds the particle until a positive 
jump occurs and allows the particle to move up and resume the random walk’ 
(p. 24; also see p. 61). Similarly, a particle crossing an upper barrier will be held at 
this barrier until a negative shock occurs. We shall refer to such states as 
reflecting sticky barriers. If _x, X denote sticky barriers, then the reflected process 
{xt} is defined recursively by 

X f+l= X I 
x if X 2 X, 

if_x<X<%, (1) 

x if X I x. 

Thus, x,+ 1 has a doubly censored distribution. Let y]Dc (doubly censored) 
denote the expectation of x,+ 1. Then trivially by (1): 

s 

x. 
VDC = xdW dX + X4(X) dX, (2) 

\ 

which we shall refer to later. 

The rrlflecting mirror barrier 

A second (and more common) definition of a ‘reflecting barrier’ treats the 
barrier as if it were a mirror reflecting a light wave - see for instance Karlin and 
Taylor (1981, p. 251). Fig. 1 illustrates the concept with a reflecting upper 
barrier. 

At time t, xt is given (point P). In the absence of a barrier, x,+ i = X may be 
located anywhere along line LL with density 4 (X). In the presence of a reflecting 
mirror barrier at X, an outcome X = Qi (inside the band) will be unaffected by 
that barrier. However, a ‘virtual’ outcome X = Q2 will be reflected and will end 
up at Q3 = Q2 - 2(Q2 - 2) = 2X - Q2 = 2X - X (the ‘real’ outcome). In this 
vein, if x and X denote reflecting mirror barriers, a reflected process {xt } will now 
be defined recursively by 

2X-X if X 2 :U, 

X 1+1 = X if _x < X < X, assuming no secondary reflection. (3) 

2~5 - X if X 5 x, 



1394 C. Rose /Journal of Economic Llynamics and Control I9 (1995) 1391-1403 

L; time 
t t+l 

Fig. 1. Reflecting upper barrier. 

x E 

Fig. 2. Generalised doubly folded normal density function. 

In the presence of both an upper and a lower reflecting mirror barrier, 
secondary reflection will occur if X is so large that not only is it reflected off the 
upper barrier, but that it then bounces across the entire band, and reflects off the 
lower barrier as well. If for instance 4(X) is normal, this assumption of ‘no 
secondary reflection’ will be reasonable if(i) p E [_x, X] and (ii) X - _x 2 30 (i.e., 
the band is at least three standard deviations wide). Under these conditions, the 
probability of secondary reflection is approximately zero.2 Secondary reflection 
is discussed further in Appendix B where condition (i) is relaxed. 

Graphically, Eq. (3) states that the transition density b(X) between the 
barriers is unaffected by those barriers, whilst the density lying outside the 
barriers will get reflected into the interior of the barrier band. Fig. 2 illustrates 

‘At worst, if p = _x or X (see Fig. 2), the Prob[secondary reflection] = cP(p - 3~) = 0.0013. 
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when the transition density C+(X) is normal. We term the resulting distribution 
to be the Generalised Doubly Folded Normal Distribution.3 

Let ADF (doubly folded) denote the expectation of x,+ 1. Then, by (3) 

* 
ADF = s ’ (2_x-X)4(X)dX+ X4(X) dX + (2x - X)4(X) dX 

-m 

= 2qDc - p [Use (2) viewing the above line by rows, 
rather than columns]. (4) 

Thus, the first moments of censored and folded distributions are related 
in a rather surprising manner, especially when we consider that the above 
proof is distribution-independent. Stated somewhat differently, given ?c,, 
the expected future value of a stochastic process with a reflecting mirror 
barrier is related by a simple identity to the expected future value of that 
process with a reflecting sticky barrier. It is worth noting that (4) en- 
compasses not only the doubly reflecting barrier, but also single reflecting 
barriers.4 

2.2. Explicit solutions when E is Gaussian 

If E w N(0, a?) (Gaussian white noise) and if once again X = x, + k + E, + I) 
then given any x,, it follows that X N N(p, 0:) with pdfq5(X) and 
cdf Q(X), where p = x, + k. Then the explicit solution to (2) is given by (see 
Appendix A) 

31n the spirit of Leone, Nelson, and Nottingham (1961) who introduce ‘the folded normal distribu- 

tion’ as a normal distribution with a single fold about zero (on the lower tail). This has been used in 
industrial practice in situations where measurements are recorded in absolute value (hence the fold 

at zero). 

4With but a single reflecting barrier, secondary reflection is of course impossible. As such, the results 

below [(6b) and (6c)] always hold true. 
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Then, formally from (5a), or intuitively from (l), it follows that lim,, m qDc = ZZ 
and lim, + _ m qnc = _x (as apparent in Fig. 3 below). Note that (5a) encompasses 
not only the doubly reflecting barrier, but also single reflecting barriers. For 
instance, to model a process that is bounded below by a sticky barrier (but with 
no upper bound), simply set X = co in (5a). Then x,+ 1 has a lower censored 
normal distribution, with mean 

VlLC = x@(_x) + PLcl - @(&)I + TV. (W 

Similarly, to model a process bounded by a sticky upper barrier (but with no 
lower bound), simply set x = - cc in (5a). Then .xt+ 1 has an upper censored 
normal distribution, with mean 

quc = p@(X) - 02c#l(X) + X[l - CD(Z)]. (5c) 

Explicit solutions for reflecting mirror barriers are given by (4) so that by 
analogy: 

&,r = 2qDc - P (DF denoting doubly folded), (64 

ALF = 2qLc - p (LF denoting lower folded), (6b) 

AUF = 2r]uc - p (UF denoting upper folded). (64 

The reflecting mirror barrier has a continuous-time analogue. To illustrate the 
point, let {X(t), t 2 0} denote the absolute Brownian motion dX = adt + bdz 
with drift a and instantaneous standard deviation b, where z is a Wiener process. 
Then, for all t > s, 

X(t) _ N(p,a’) with pdf#(.), cdf@(.), p =X(s) + a(t -s), 

o2 = b2(t - s). 

Let {Y(t), t 2 0} denote {X(t), t 2 0} reflected at the origin. Then 
E[Y(t)] = 11,~. Thus, in the simple text example of a Wiener process (a = 0, 

b = 1, X(0) = 0), one obtains E[Y(t) 1 s = 0] = 2t~$(O) = ,,6& as per 
say Kannan (p. 233). Of course, the solutions provided here are more 
general. 
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3. An application: Exchange rate target zones 

An exchange rate target zone is simply an announced band within which the 
exchange rate is allowed to float. Target zone intervention is defined here to be 
purely marginal intervention: that is to say, intervention that is triggered only 
when the exchange rate reaches the edge of the band. Such zones are interesting 
because their very presence influences the exchange rate through expectations, 
even when the band is not binding - that is, even when the exchange rate lies 
inside its band. We shall consider5 a perfectly credible target zone under two 
different regimes: 

Freejoat with target zone: The exchange rate is allowed to float freely inside 
the band. 

Managed float with target zone: There is intra-marginal intervention as well. 
The total sum of intervention will now be intervention inside the band (the 
managed float) plus a further intervention policy at the edge of the band (the 
target zone). 

For each of the above regimes, we consider two types of target zone 
intervention: 

Rejecting sticky barriers: Should the exchange rate reach one of its bounds, 
the authority intervenes by an amount just sufficient to keep the exchange rate 
at that bound. This is consistent with the notion of infinitesimal intervention at 
the margin. 

Rejecting mirror barriers: Rather than just keeping the exchange rate at its 
bounds, intervention now forces the exchange rate back into the band. More- 
over, the larger the shock, the more the exchange rate will be forced back into 
the band, other things being equal. 

In the international finance literature, it is now widely accepted that it is 
difficult to outperform a random walk in forecasting nominal exchange rates 

‘An explicit model of intervention, such as that presented here, will require that the underlying 

shock-generating process {E,} does not change following the introduction of the zone, that the 

intervention policy is known, and that the authority can set any desired exchange rate by means of 

direct intervention in the foreign exchange market. 
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under a free float.6 In essence, a random walk is still the benchmark to beat. As 
such, let the free float process be given by’ 

x:+1 =x:+k+c,+l, E-N(O,& 

xl”+ i N N(#r, 0:) with pdf4rF( .), cdf@rF( s), 

P FF = x: + k. 

With leaning-against-the-wind, a managed float would then yield: 

x;“+ 1 N N(pMF, a:) with pdfq5MF( .), cdfQMF( .), 

pMF = (1 - p)x: + p2 + k, 

(7) 

(8) 

where p E [0, l] measures the degree of leaning, and 2 denotes the authority’s 
desired exchange rate. 

We wish to derive the expected future exchange rate under each regime, 
conditional on 52, (the information set at time t). 

The free float (FF) solution is given instantly by (7) as 

E [x:+ 1 1 S2rF] = pFF. 

The managed float (MF) solution is given instantly by (8) as 

E Lx:+ I 1 Q;MF] = ,uMF. (10) 

6The seminal Meese and Rogoff paper (1983) springs to mind, amongst many others. 

‘This is consistent with Krugman models where the free float exchange rate also follows a 
random walk. Nevertheless, we stress an important distinction here. Barnett (1992) and King et al. 
(1992) have recently shown that exchange rates are able to display randomness unrelated to 
fundamentals. More strikingly, Flood and Rose (1993, p. 3) are ‘driven to the conclusion that the 
most critical determinants of exchange rate volatility are not macroeconomic’. More generally, tests 
for excess volatility in financial markets suggest that asset prices are affected by more than 
fundamentals - an empirical result consistent with the theoretical literature on fads, bandwagon 
effects, and rational stochastic speculative bubbles. Since Krugman models only capture funda- 
mental sources of randomness, it seems unlikely that they capture the full stochastic nature of 
exchange rates. 
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Zero Drift 

Fig. 3. Free float and target zone. 

The free float with target zone solution is given instantly by (5a) and (6a) as 

ECxt.1 I QPFTZI = 
VDc if 3, X are sticky 
l 

DF if &, X are ‘mirrors’ 

with {p =pLFF, C#I = 4FF, @ = @F, 

(11) 

The managed float with target zone solution is given instantly by (5a) and 
(6a) as 

ECx,., I QtMFTZl = 
VDc if _x, X are sticky 
;1 

DF if _x, X are ‘mirrors’ (121 

with {CL =pMF, 4 = $MF, Q = Q~MF, 

The target zone solutions (11) and (12) each define a nonlinear first-order 
expectational difference equation E [x, + 1 1 RtmTZ] =f(x, ) .), wheref is a func- 
tion defined by (11) or (12) as appropriate. Plotting E [x,+ 1 ) QtMTZ] against x, 
then yields a nonlinear S-shaped curve’ (when viewed within the band). Fig. 
3 illustrates for a free float regime, while Fig. 4 illustrates for a managed float. 

*This relationship between the expected future rate and the present rate can also be plotted with 

Krugman-style models and doing so yields similar results see for instance Rose and Svensson 

(1991. p. 6. Fig. 2). 
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Expected Future Rate 
Free Float Managed Float (p = 3, ; = 0) 

Managed Float with 
c c - stick) Target Zone 

_ _Mamged Float with 
mirmr Target Zone 

I deviations wide. 

Zero Drift 

Fig. 4. Managed float and target zone. 

Because the S-curves in Fig. 3 have slope less than one and lie between the free 
float line and the horizontal axis, the standard stabilising properties of a perfect- 
ly credible target zone follow. Similarly, in Fig. 4, the S-curves lie between the 
managed float line and the horizontal axis. Moreover, because the S-curves are 
now viewed in intertemporal space, convergence properties can be illustrated as 
well. This is discussed further in Rose (1995) where the empirical implications of 
convergence are discussed. By contrasting Fig. 3 with Fig. 4, it is interesting to 
observe that with leaning-against-the-wind, the nonlinearity of the two target 
zone solutions (within the band) is considerably reduced.’ Indeed, the ‘S-curves 
in Fig. 4 are essentially linear within the band. Imperfectly credible bands are 
beyond the scope of this paper. Nevertheless, we briefly note that such regimes are 
often modelled as some convex combination of the perfectly credible solution and 
the crash solution (as per Krugman, 1991). If so, an imperfectly credible regime 
follows as a natural extension from the perfectly credible solution derived above. 

Recently, the target zone literature has attracted criticism (a) because it 
assumes that markets are ‘excessively’ rational by imposing saddle path solu- 
tions (see Krugman and Miller, 1993) and (b) because such models are funda- 
mental asset pricing models (see footnote 7; also see Williamson, 1993, who 
describes the breakdown in the belief that exchange rates are driven primarily by 
fundamentals). By contrast, the statistical approach illustrated in this paper 
circumvents such criticisms, and it does so without any need for differential 
equations or smooth pasting conditions. Despite these differences, it would 
appear that the central stability theorems of the literature are robust. 

9This result is consistent with Svensson (1992). 
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4. Coda 

This note has served two roles. First, it has illustrated a surprising statistical 
identity that exists between folded and censored distributions, and we show that 
this is relevant to random processes bounded by reflecting barriers. Second, by 
using the derived framework, the paper provides a novel and conceptually 
different approach to modelling exchange rate target zones that circumvents 
many of the theoretical problems associated with the existing target zone 
literature. 

Appendix A 

Let Z N N(0, 1) with pdf h(z) and distribution function H(z), and let 
X m N(p, a’) with pdf 4(x) and distribution function Q(x). 

If Z = (X - ~)/cJ one can show that 

(a) 4(x) = T, 

(b) W) = H(z), 

(c) by direct integration 
I 

Z/I(Z) dz = h(z) - h(2). 
I 

By using the change of variable x = p + (TZ, it follows that 

x+(x)dx = + oz)F(crdz) applying (a), 
X-P 

with 2 = L ... 
0 ’ 

=P h(z) dz + 0 dZh(z) dz 
s _r 

= PW(z3 - H(z)1 - fJCN-3 - WI 

applying (4, 

= cc C@G) - @WI - a2 c4m - 4(r)l 

applying (b) and (a). 
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Appendix B 

A note on secondary and higher-order reJIection 

Let s = X - _x denote the size of the band, and let x0 = (x + X)/2 denote 
the centre of the band. Then, any outcome X can always be decomposed as 
follows: 

X=x,+s.n+c where n=0,+1,+2 ,..., and jcl<s/2. 

In the presence of lower (_x) and upper (2) reflecting mirror barriers, secondary 
reflection may occur. If n = 0, there will be no reflection at all. In Section 2, it 
was assumed that InI < 2 (i.e., no secondary reflection). This appendix expands 
the analysis to nth-order reflection (the ‘particle’ is reflected n times) when 4(X) 
is normal. The reflected process {xt} will now be defined recursively by 
x,+ i = g(X), where g: Iw + [_x, X] is defined by 

x - x0 
g(X) = x0 + (- 1)“~ where n = Round ___ 

[ 1 s 

and c=X-x0-s’n 

(the function Round[x] gives the integer closest to x). 
This replaces Eq. (3). It follows that g is a periodic function with period 2s. 
Section 2 showed that lZDF = 2qDc - ~1 assuming InJ < 2. As above, if C+(X) is 

normal, this assumption will be reasonable if (i) p E [_x, Z] and (ii) s 2 3~7. We 
now illustrate how ADF can be used when p # [x, %I. To do so, note that any p can 
be decomposed as follows: 

p=xo+s.n+c. 

Let 0 [CL 10, _x, X] denote the pdf of the generalised doubly folded normal 
density function derived from a normal density function with mean p and 
variance cz (see Fig. 2). Then, using simple graphical analysis (use Fig. 2) one 
can show that 

O[P 1 *] = @[g(u) I .] where g(p)E [_x, X], thus satisfying (i). 

In summary then, when 4(X) is normal, Eq. (6a) may be stated: 

&F = ~VDC - P if (i) ,u E [_x, X] and (ii) s 2 30. (13) 

If ,u $ [_x, Xl, simply replace p with g(c() throughout the RHS of Eq. (13). 
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