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Using mathStatica [1], Rose and Smith [2] illustrate the automated deriva-
tion of the exact density of order statistics obtained from a random sample
of size n on a continuous random variable. This article illustrates the new
functionality in mathStatica to allow for discrete random variables. More-
over, by building on the new Piecewise capability in Mathematica, we are
able to further generalise to the case of non-identically distributed random
variables, thereby providing a completely flexible solution.

Introduction

Let X denote a continuous random variable with probability density function
(pdf) f(») and cumulative distribution function (cdf) F(x), and let
(X1, X5, ..., X,) denote a random sample of size » drawn on X. Let
Xy, X@)y -+, X)) denote the random sample ordered such that
Xy < Xy < -+ < Xy then (X, Xy, ..., X)) are collectively known as the
order statistics derived from the parent X. For example, X, = min(Xj, ..., X)) is
the smallest order statistic and corresponds to the sample minimum, and X, is
the largest order statistic and corresponds to the sample maximum.

For a detailed discussion of the statistical theory pertaining to order statistics see,
for example, [3, 4, 5, 6]. For the case in which X is a discrete random variable,
see [7]. On the computational side, Rose and Smith [2, Section 9.4] use mathStat-
ica to obtain the algebraic and numeric properties of order statistics derived
from a continuous parent. Whereas Evans et al. [8] appear to be restricted to
numeric-only calculations, they also consider settings in which the parent vari-
able is sampled without replacement.

Section 1 illustrates briefly the case of a continuous parent, while Sections 2 and
3 extend to the case of a discrete parent. Section 4 relaxes the independent and
identically distributed (iid) assumptions, thereby illustrating some of the new
functionality of mathStatica.

We begin by loading mathStatica 1.5 or later.

In[1]:= << mathStatica.m
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m 1. Continuous Parent Distribution
Let the continuous random variable X have a U-shaped distribution with pdf

()
1

In[2]:= £ = ————;
Jt‘\/A2 - x2

defined on a domain of support (-4, A), where parameter A > 0:
In[3]= domain[f] = {x, -A, A} && {A > 0};
Figure 1 plots the parent pdf’s when parameter A = 1, 3 and 5:

In[4]:= PlotDensity[f/. A—->{1, 3, 5}];
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Figure 1.

For a sample of size 7 on X, the pdf of the 7" order statistic X, is given by the
mathStatica function:

In[5]= g = OrderStat[r, f]

2t gm (J‘( -2 ArcTan[\/Az;_xz] )n_r (]‘( +2 ArcTan[\/Az;_xz] >_1+r n!

VA-%) (A+x) (n-r)!' (-1+1)!

with domain of support:

Out[5]=

In[6]:= domain[g] = OrderStatDomain([r, f]
outf]= {x, -A, A} && {n € Integers, r € Integers, A>0, 1 <r <n}

Figure 2 plots the pdf of X, as » increases from 1 to 10, given a sample size
n =10, with 4 = 3:
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In[7]:= PlotDensity[g /. {A-> 3, r » Range[10], n—- 10}];

Figure 2.

"The bivariate pdf of two order statistics X,y and X, for 7 < s, is given by:

n[8):= OrderStat[{r, s}, f]

-1+r
ArcTan[x—r]
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m 2. Discrete Parent Distribution (Function Form)

mathStatica 1.5 expands its functionality to the case of a discrete parent, again
tor arbitrary distributions. To illustrate, let the random variable X have a Poisson
two-component-mix distribution with probability mass function (pmf) f(x):

“A X -0 o*

+ (1-w H
x! x!

In@l= £ =w

and domain of support:

In[10]:= domain[f] ={x, 0, o} && {A >0, 0>0, 0<w<1} && {Discretel};
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Here, 6 and A are the Poisson parameters, while w is the mixing weight parame-

ter. Figure 3 illustrates this pmf when A = 4,6 =20 and w = 1

mi11}= PlotDensity[f/. {A>4, 020, > -:-}] ;
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Figure 3.

Given a sample of size n, the pmf of the 7" order statistic X, denoted g(x), is:
In[12]:= g = OrderStat[r, f]

1

Out{12]=
eH12] Betal[r, 1+n-r]

x (-(-1+w) Gamma[x, 6] + wGamma [x, A])
(-Beta[ TL+x] , T, 1+n—r]+
(1+x) ((-1+w) Gamma[1+x, 6] -wGammal[1l+x, A1)
Beta[- T2+ x] , T, 1+n—r])

with domain of support:
In[13]:= domain[g] = OrderStatDomain[r, f]

ouf13]= {x, 0, ©} && {n € Integers, r € Integers,
6>0,1>0,0<w<1,1=<r=<n}&&{Discrete}

Figure 4 plots the pmf of the minimum order statistic (i.e. 7 = 1) when A =4,
60=20and w= % and the sample size is 7 = 10:
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1
In[14]:== param = {A—)4, 620, w- —2—, r->1,n-> 10};

PlotDensity[g /. param];
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O Monte Carlo ‘Check’ of the Exact Solution We Have
Just Plotted

Here is a single pseudorandom sample of size # = 10 drawn from the parent
two-component-mix Poisson pmf f(x):

In[16]:= DiscreteRNG[10, f /. param]
ou16]= {3, 3, 22, 32, 12, 15, 2, 19, 4, 3}

If we want 50,000 such samples (each of size 10), the neatest approach is to
generate all 50000 = 10 drawings in one go:

In[17]:= data = DiscreteRNG[50000* 10, f /. param]; // Timing
ou{17]= {1.96 Second, Null}

and then partition this data into 50,000 samples (each of size 10). We can then
find the minimum of each of the 50,000 samples by mapping the Min function
across each sample:

In[18]:= samplemin = Map[Min, Partition[data, 10]];

It n is very large, efficient algorithms specifically designed for pseudorandom
generation of order statistics exist; see [9]. Figure 5 plots the empirical relative
frequency distribution of the sample minimum data (A) together with the exact
pmf of the sample minimum (®): a good match should see the former obscure
the latter nearly everywhere.
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In[19]:= FrequencyPlotDiscrete[samplemin, g /. param];
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Figure 5.

m 3. Discrete Parent Distribution (List Form)

Suppose we throw an unfair six-sided die onto a flat surface such as a table. Let X
denote the upmost face of the die with pmf:

— . 1 1 1 1 € 3
PX =x): 3 6 6 6 12 12
x: 1 2 3 4 5 6
Table 1. The pmf of X.
Using List Form, we enter this pmf as follows:
{ 1 1 1 1 1 3
In[20]:= f = s =" =" == —, — [
20l 6 6 6 6 12 12
domain[f] = {x, {1, 2, 3, 4, 5, 6}} && {Discretel};
The pmf of the 7™ order statistic X is:
In[22]:= g = OrderStat[r, f]
Beta[%, r,1+n-r] —Beta[%, r,1+n-r] +Beta[%, r,1+n-r]
Ouif22}~ { Betal[r, 1+n-r] °’ Betal[r, 1 +n-r] ’

-Beta[%, r,1+n-r] +Beta[%, r,1+n-r]
Betal[r, 1+n-r]

-Beta[%, r,1+n-r] +Beta[%, r,1+n-r]
Betal[r, 1+n-r]

-Beta[%, r,1+n-r] +Beta[%, r,1+n-r]

Betal[r, 1+n-r]

>

-Beta[%, r,1+n-r] +Betal[l, r, 1+n-r] }

Betal[r, 1+n-r]
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with domain of support:
In[23]:= domain[g] = OrderStatDomain[r, f]

ouf23- {x, {1, 2, 3,4, 5, 6}}&&
{n € Integers, r € Integers, 1 <r < n} & {Discrete}

Here, for example, is a plot of the pmf of the third order statistic X3, when the
sample size n = 10:

In[24]:= PlotDensityl[g/. {r—»>3, n—>10}];
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Figure 6.

m 4. Extensions and Forthcoming Features

Thus far, this article has assumed that we are dealing with samples of iid vari-
ables. In this section, we take the major step of relaxing these assumptions. The
generalisation to non-identical distributions is an enormously flexible and
powerful capability. To do so, we require the new Piecewise functionality found
in Mathematica 5.1 or later. In the examples that follow, we provide an
illustration/preview of this new functionality as already implemented in the
developmental version of mathStatica and which will be available in its next
public release.

0 Non-ldentical Parameters

Let X; denote a continuous random variable with pdf f(x; A;) and cdf F(x; A;),
such that (Xi, X3, ..., X)) are independent but not identical variables due to
differing parameters A;, for 7 = 1, ..., n. For example, consider an Exponential(d)
parent where indenticality is relaxed by replacing A with 4;, for 7 = 1, ..., #. Thus:

In[25]:= £ = e *% ; domain[f] = {x, 0, ®} && {A, > 0};

i

Then, the pdf of the minimum order statistic (in, say, a sample of size 4) is:
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In[26]:= OrderStat([1, f;, 4]

_x(1+1+1+1

At ) QoA+ Qs +25 O3 +29)))

Out[26]= o As s
1 A2 A3

The pdf of the next largest order statistic, X|,), is substantially more complicated:

In[27]:= OrderStat([2, f;, 4]

1 _x(L+L L+L)
Out[27]= m(e A Ay A3 Mg
1 A2 A3

((—3+e% +e% +e%>)Lz)Ls)L4+)Ll ((—3+e% +e% +e%>)Ls)L4+

Ay ((-3+e% re +e%>)ts+(—3+e% re +e%>)t4>)))

00 Non-ldentical Distributions

Next, let us suppose we have three completely different distributions defined
over three different domains of support. In the following, f(x) is the pdf of an
Exponential(d), g(x) is the pdf of a standard Normal, and A(x) is the pdf of a
Uniform(-1, 1) random variable:

1
In[28]= £ = —/—\- e ¥ domain[f] = {x, 0, «} && {A>0};
Q_XT
In[29]:= g = H domain[g] = {x, -®, o};
Var
1
In[30]:= = —2—; domain[h] = {x, -1, 1};

We can now solve completely general questions. For example, let us suppose we
have a random sample of size » = 20. Of this sample, suppose that 10 values are
drawn from the Normal, seven from the Exponential, and three from the Uni-
form. What is the pdf of the second smallest value from the sample, namely the
second order statistic? Solving this problem would normally be enormously
complicated, but the solution is now given simply by:

In[31]:= OrderStat[2, {f, g, h}, {10, 7, 3}]
The output can be viewed in the electronic version of this notebook.

This same technology provides a neat way to solve problems such as finding the
pdf of min(X, Y, Z), when X, ¥ and Z have completely different distributions
and different domains of support. For our example, if X ~Exponential(d),
Y ~Normal(0, 1) and Z~ Uniform(-1, 1), then the pdf of min(X, ¥, Z) is simply
the pdf of the first order statistic:
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In[32]:= sol = OrderStat[1, {f, g, h}]

<2

e 2 x<-1

Var

2
e 2 (-1+x) X

Out[32]= - 2\/72—” + % Erfc[ N ]

A wd) [T 2
e 2 X —\/7 (-1+x) A+e 2 (1-x+A) Erfc[

x

4
with domain of support:
In[33):= domain[sol] = {x, -o, o} && {A > 0};
Here is a plot of the pdf we have just derived:

In[34]:= PlotDensity[sol /. A—>1, {x, -4, 2}, PlotStyle - Hue[1]];

sol

Figure 7.

We can easily ‘check’ our solution using Monte Carlo methods. Here are
100,000 pseudorandom drawings from each of the three distributions:

In[35]:= << Statistics'

In[3¢]:= dataf = RandomArray[ExponentialDistribution[1/A] /. A -1, 100000];
datag = RandomArray[NormalDistribution[0, 1], 100000];
datah = RandomArray[UniformDistribution[-1, 1], 100000] ;

Next, we create 100,000 samples of size 3 containing one drawing from each of
the three distributions, and then map the Min function across each sample,
generating our 100,000 empirical drawings of the sample minimum:

In[39]:= samplemin = Map[Min, Transpose[{dataf, datag, datah}]];

Figure 8 compares the empirical pdf (—) of the data we have just generated
with the theoretical pdf (---) derived earlier:
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In[40]:= FrequencyPlot[samplemin, {-4, 2, .05}, sol /. A—>1];
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Figure 8.

O Independence Relaxed, Identicality Maintained

The distribution of an order statistic is derived as a many-to-one transformation
from the joint distribution of (X, ..., X,). Although there are differing ways in
which the distribution can be found, perhaps the simplest method uses equiva-
lence events. To illustrate, the event X, <« is equivalent to X; <, for all
i=1, ..., n, where x is arbitrarily chosen. Accordingly, the cdf of X,y in terms of
x is given by

PXy=x)=PX =ux, ..., X, <x). 1)

In the case of X, (and X, too), there is only one equivalent event. The number
of equivalent events increases substantially as other inner order statistics are
considered; however, in order to keep our discussion as simple as possible we will
confine attention to X, from here on. This is not necessarily a case without
interest, for the extremal X, is encountered in many practical contexts. Exam-
ples include X, as the measure of record high temperatures and record times in
sports.

If the standard iid assumptions hold, then (Xj, ..., X,) is a collection of mutually
independent random variables, and all are copies of the same parent X (with pdf
f(x) and cdf F(x)), leading to considerable simplification in the right-hand side
of (1):

PXum <=2)=PX <x)". )
If, for example, X is continuous, then the pdf of X{,, is obtained by differentia-
tion of (2) with respect to x, yielding g(x) = n F (x)" ! ().

Just as identicality can be relaxed in many ways, so too can independence. To
introduce a dependence structure, we may begin by rewriting (1) in its copula
form

PXw = %) = C(Fi(v), ..., F(x)

3)
= C(F(x), ..., F(x)),
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where the second line recognises that X, ..., X, are copies of a common parent
X. The n-copula C:[0, 1]" > [0, 1] is the function that represents the depen-
dence structure of Xj, ..., X,. For example, the special case
C(uy, ..., uy) =uy ...u, corresponds to mutual independence amongst

Xi, ..., X,. The representation (3) is due to Sklar [10] and is unique provided
X is continuous.

Tractable results can be obtained by assuming an Archimedean dependence
structure for C; for details of these copulas see [11, Chapter 4]. Let
¢:[0, 1] - [0, oo] denote the strict generator function associated with Cj it is
differentiable such that ¢'(t) = d¢(t)/0t <0 on 0 <t <1, and its inverse ¢!
must be completely monotonic if # = 3. For example, the generator associated
with the independence copula ¢(¢) = —logs is strict, and its inverse
¢ 1 (1) = exp(—1) is completely monotonic. Then, the key property of the genera-
tor is that

e(Gx) = e(Fx) + - + p(F(x))
=ne(F(x)),
where G(x) = P(X{,) <) is the cdf of X{,. Differentiating both sides of (4) with
respect to x and rearranging yields the pdf of X,:
" @' (F(x)
@' (G(x)

Q)

glx) = f), )

where the denominator would be computed as per ¢' (G(x)) = ¢' (¢! (1 p(F(x)))).
The resemblance in the structure of the pdf (5) to the pdf in the iid case,
n F(x)"! f (), is striking.

To illustrate, let X ~ Exponential(d) with pdf f(x):
1

In[41]:= £ = —/—\- e ** ; domain[f] = {x, 0, »} && {1 > 0};
and cdf F(x) = P(X < x):

In[42]:= F = Prob[x, f]

Out[42]= 1 - e‘%

and summarise our assumptions:

In[43]:= assum = {n € Integers, n>0,x>0,A1>0, 6 21};

Enter the details for a particular case considered by Ballerini [12], namely, that of

the Gumbel-Hougaard family of #-copulas with generator ¢(z) = (~log?)’, with
dependence parameter 6 = 1:

inf44]= o[t_] = (-Log[t])®; pilt_] =Exp[-t°1; ¢d[t_]1=DI[p[t], t];
Then, from (5), the pdf of X, is given by
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pd [F]
od[piln * ¢[F]]]

In[45]:= g = FullSimplify[n f, assum]

1
1

x \0F

(1 -—e x ) ne

Out[45]= T ey
with domain of support:

In[46]:= domain[g] = {x, 0, »} && assum;

Setting 6 = 1 corresponds to the iid case; notice too that replacing # in the iid pdf
with #'/% yields the pdf of X(,. This, for example, means that many algebraic
results on the properties of X, can be found simply by replacing # with 7' in
the appropriate iid formula. In Figure 9, the solid line denotes the pdf when
6 = 1 (the iid case), while the dashed line denotes the pdf when 6 = 2.

In[47]:= PlotDensitylg/. {6 >{1, 2}, A—>1, n—>10}];
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Figure 9.
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