For any given square, we can now find the probability that a randomly chosen path is a Knight's Tour. If X = No. of Knight's Tours, and Y = No. of Paths, then
140 | 120 | 140 |
128 | 144 | 128 |
86 | 108 | 86 |
128 | 144 | 128 |
140 | 120 | 140 |
12856 | 13091 | 13091 | 12856 |
13085 | 10178 | 10178 | 13085 |
10112 | 6338 | 6338 | 10112 |
13085 | 10178 | 10178 | 13085 |
12856 | 13091 | 13091 | 12856 |
625308 | 727156 | 595892 | 727156 | 625308 |
727156 | 601036 | 384804 | 601036 | 727156 |
595892 | 384804 | 254400 | 384804 | 595892 |
727156 | 601036 | 384804 | 601036 | 727156 |
625308 | 727156 | 595892 | 727156 | 625308 |
35798626 | 38275155 | 33991411 | 33991411 | 38275155 | 35798626 |
40769573 | 34283068 | 21828366 | 21828366 | 34283068 | 40769573 |
32628352 | 22412002 | 14299730 | 14299730 | 22412002 | 32628352 |
40769573 | 34283068 | 21828366 | 21828366 | 34283068 | 40769573 |
35798626 | 38275155 | 33991411 | 33991411 | 38275155 | 35798626 |
2240456924 | 2350426879 | 2051825358 | 2136903238 | 2051825358 | 2350426879 | 2240456924 |
2420344251 | 2046249807 | 1387283117 | 1412027680 | 1387283117 | 2046249807 | 2420344251 |
1947455492 | 1364268950 | 915277280 | 925098592 | 915277280 | 1364268950 | 1947455492 |
2420344251 | 2046249807 | 1387283117 | 1412027680 | 1387283117 | 2046249807 | 2420344251 |
2240456924 | 2350426879 | 2051825358 | 2136903238 | 2051825358 | 2350426879 | 2240456924 |