For any given square, we can now find the probability that a randomly chosen path is a Knight's Tour. If X = No. of Knight's Tours, and Y = No. of Paths, then
| 15 | 12 | 15 |
| 12 | 18 | 12 |
| 12 | 18 | 12 |
| 15 | 12 | 15 |
| 760 | 668 | 668 | 760 |
| 668 | 562 | 562 | 668 |
| 668 | 562 | 562 | 668 |
| 760 | 668 | 668 | 760 |
| 12856 | 13085 | 10112 | 13085 | 12856 |
| 13091 | 10178 | 6338 | 10178 | 13091 |
| 13091 | 10178 | 6338 | 10178 | 13091 |
| 12856 | 13085 | 10112 | 13085 | 12856 |
| 234481 | 227671 | 183417 | 183417 | 227671 | 234481 |
| 226103 | 192072 | 110957 | 110957 | 192072 | 226103 |
| 226103 | 192072 | 110957 | 110957 | 192072 | 226103 |
| 234481 | 227671 | 183417 | 183417 | 227671 | 234481 |
| 4767809 | 4519316 | 3740155 | 3775750 | 3740155 | 4519316 | 4767809 |
| 4459714 | 3836066 | 2361451 | 2212492 | 2361451 | 3836066 | 4459714 |
| 4459714 | 3836066 | 2361451 | 2212492 | 2361451 | 3836066 | 4459714 |
| 4767809 | 4519316 | 3740155 | 3775750 | 3740155 | 4519316 | 4767809 |
| 94453126 | 89817510 | 73496915 | 76391894 | 76391894 | 73496915 | 89817510 | 94453126 |
| 88336320 | 75080733 | 46295469 | 47067619 | 47067619 | 46295469 | 75080733 | 88336320 |
| 88336320 | 75080733 | 46295469 | 47067619 | 47067619 | 46295469 | 75080733 | 88336320 |
| 94453126 | 89817510 | 73496915 | 76391894 | 76391894 | 73496915 | 89817510 | 94453126 |